Typical analysis

25 ml = 0.05 g Glucose (dextrose)

Packaging

- 100 ml amber glass bottle
- 500 ml clear plastic bottle

Chemical composition

A solution of copper sulphate, sodium carbonate, sodium citrate: Quantitative formula

Weight per litre

1.19 kg

Appearance

Blue, aqueous liquid

Miscibility

Miscible with water and ethanol

Melting point

>0°C

Density (g/ml)

1.26

Other information

25 ml = 0.05 g glucose (dextrose)

Laboratory preparation, applications and practices

Usage

The blue colour changes to red, orange or yellow precipitate or suspension in the presence of a reducing sugar such as glucose and is therefore used in testing such materials, especially for urinalysis in the treatment of diabetes

Filter paper

Filter no: 0222, 0225, 1839

Storage and handling information

Disposal methods

16

Transport regulations

Tariff code 3822.00.00

To test for the presence of reducing sugars in food, the food sample is dissolved in water and a small amount of Benedict’s reagent is added. The mixture is heated in a boiling water bath and any precipitate formed is recorded as a positive result for the presence of reducing sugars in the food. Sucrose is a non-reducing sugar and thus does not react with Benedict’s reagent. Sucrose can produce a positive result with Benedict’s reagent if heated with dilute hydrochloric acid prior to the test. The acidic conditions and heat break the glycosidic bond in sucrose through hydrolysis. The products of sucrose decomposition are glucose and fructose, which can be detected by Benedict’s reagent as is recorded as a positive result for the presence of reducing sugars in presence of glucose in urine. Glucose found to be present in urine is an indication of diabetes. Once a reducing sugar is detected in urine, further tests have to be undergone in order to ascertain which sugar is present. Only glucose is indicative of diabetes.